Modeling Expectations with GENEFER - an Artificial Intelligence approach

نویسندگان

  • Eric Ringhut
  • Stefan Kooths
چکیده

Economic modeling of financial markets attempts to model highly complex systems in which expectations can be among the dominant driving forces. It is necessary, then, to focus on how agents form expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. Agents’ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule Bases. For example if a single agent believes the exchange rate is determined by a set of possible inputs and is asked to state his relationship, his answer will probably reveal a fuzzy nature like: “IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US THEN the EURO will rise against the USD”. ‘Low’ and ‘larger’ are fuzzy terms which give a gradual linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as learning operators. These examples can either be empirical data or originate from an economic simulation model. The software GENEFER (GEnetic NEural Fuzzy ExploreR) has been developed for designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, Fuzzification, Rule Base Generating and Rule Base Tuning. The two latter steps make use of genetic and neural learning algorithms for optimizing the Fuzzy Rule Base.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Expectations with GENEFER - an Artificial Intelligence approach

Economic modelling of financial markets means to model highly complex systems in which expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. Agents’ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule-Bas...

متن کامل

New Artificial Intelligence Modeling for the Photocatalytic Removal of C.I. Acid Yellow 23 in ‎Wastwater

This paper proposes two methods to predict the efficiency of photochemical removal of AY23 by UV/Ag-TiO$_{2}$ process. In this work the potential of the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) modeling approaches are presented to forecast the photocatalytic removal of AY23 in the presence of Ag-TiO$_{2}$ nanoparticles prepared under desired conditions. To v...

متن کامل

A Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness

Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Experimental investigation, modeling, and optimization of combined electro-(fenton/coagulation/flotation) process: design of experiments and artificial intelligence systems

In this study, a combined electro-(Fenton/coagulation/flotation) (EF/EC/El) process was studied via degradation of Disperse Orange 25 (DO25) organic dye as a case study. Influences of seven operational parameters on the dye removal efficiency (DR%) were measured: initial pH of the solution (pH0), applied voltage between the anode and cathode (V), initial ferrous ion concentration (CFe), initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000